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Abstract
We consider the spectral problem for the adjacency matrix of a discrete star-
graph composed of a compact cluster and a few semi-infinite periodic leads
attached. Based on the spectral properties of the adjacency matrix we develop
the Lax–Phillips scattering theory for the corresponding discrete wave equation.

PACS numbers: 02.10.Ox, 02.30.Tb, 03.65.Nk
Mathematics Subject Classification: 47A40, 81U15, 05C45

1. Introduction

Spectral methods are widely used for the study of transport phenomena on compact discrete
graphs; see [1]. The spectrum of the adjacency matrix of a discrete compact graph consists
of a finite number of eigenvalues, which implies typical features of the corresponding random
walk on the graph. The simplest non-compact discrete star-graph is obtained by attaching
semi-infinite periodic leads to a compact graph (a cluster). The spectrum of the corresponding
adjacency matrix has an absolutely continuous component. The typical transport phenomenon
observed on the non-compact star-graph is the transmission of an incoming signal from one
semi-infinite lead to another across the cluster; see [2]. This defines a role of the discrete non-
compact graph with periodic leads as a convenient model for the optical network constructed
of photonic crystals; see for instance [3–6]. The corresponding adjacency matrix or perturbed
adjacency matrix, with special boundary conditions at the nodes, can play the role of a typical
Hamiltonian. The optical conductance is defined by the scattering matrix of the Hamiltonian,
which is usually calculated based on the stationary approach with the spectral parameter on a
spectral band.

In this paper, we study the interplay between the characteristics of the discrete spectrum
(eigenvalues and the eigenfunctions) of the adjacency matrix of the cluster and the transmission
of signals from one lead to another. In particular, we derive an exact formula for the Scattering
matrix of the optical network in terms of Neumann-to-Dirichlet map (ND-map) of the cluster.
We also suggest a non-stationary interpretation of the constructed stationary Scattering matrix
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based on the discrete wave equation on the graph. The corresponding Lax–Phillips theory
allows us to reveal the spectral meaning of resonances.

Our paper has the following structure. In the second section we introduce an analog of
the ND-map of the cluster and construct the scattered waves and the scattering matrix of the
star-graph. In the third section we discuss the resonance mechanism of transmission of signals
across the cluster and calculate the approximate scattering matrix based on a local rational
approximation of the ND-map. In the fourth section we consider the discrete wave-equation,
introduce the relevant energy norm and describe an orthogonal pair of incoming and outgoing
subspaces. In the fifth section we consider the non-stationary scattering problem on the star-
graph in terms of the Lax–Phillips theory. In the conclusion we briefly discuss the scattering
problem for leads with non-trivial periods. We postpone to forthcoming publications the
thorough analysis of the problem of leads with non-trivial periods, which requires spectral
theory of analytic functions on a multiply connected domain.

2. The discrete Schrödinger equation on a star-graph

Consider a non-compact graph � consisting of a compact part (cluster) �in and a few
simplest semi-infinite periodic leads ω = {ωl}Nl=1 attached to some vertices ar ∈ �in, r =
1, 2, . . . , N < ∞. The simplest lead ωl is a periodic lattice

{
bl

1, b
l
2, b

l
3, . . .

}
, where each

node bl
s has two nearest neighbours bl

s−1, b
l
s−1. Following [1], we consider the adjacency

matrix L of the graph � in the space of square summable wave vectors U = {uin, �u}. Here
uin = (u1, u2, u3, . . . , uM) are complex coordinates of the inner component uin of U, defined
at the vertices as, s = 1, 2, 3, . . . ,M,M � N , and �u = (u1, u2, u3, . . . , uN) is the set of
l2-vectors ul = (

ul
1, u

l
2, u

l
3, . . .

)
on the leads ωl, l = 1, 2, . . . , N . The first component of U in

the decomposition l2(�) = l2(�in)⊕ l2(ω) is finite-dimensional, dim l2(�in) = M , the second
component is infinite-dimensional. If the lead ωk is attached to the node ak ∈ �in, we impose
on vectors U from the domain of the operator L the boundary conditions uin(ak) = uk

1, thus
assuming that bk

1 ≡ ak, k = 1, 2, . . . , N . We introduce also the contact space Econt = E = CN

as a space of vectors constituted by the values of the wave vectors at the contact points ak .
The adjacency matrix L of the star-graph can be interpreted as a self-adjoint extension

(see [7]) of the properly restricted orthogonal sum Lin ⊕ ∑N
k=1 lk of the adjacency matrix of

the cluster and ones of the leads ωk:

lu =




0 1 0 0 0 0 0 0 . . .

1 0 1 0 0 0 0 0 . . .

0 1 0 1 0 0 0 0 . . .

0 0 1 0 1 0 0 0 . . .

0 0 0 1 0 1 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .







u1

u2

u3

u4

u5

. . .




.

Though the restricted operator is not densely defined, the corresponding self-adjoint extension
can be constructed based on [7].

We revisit (see for instance [8]) the spectral properties of the unperturbed operator l on a
lead. It is self-adjoint in l2 and has a simple absolutely continuous spectrum. The spectrum
consists of a single spectral band [−2, 2] with eigenfunctions parametrized by the quasi-
momentum exponential � = eip with real quasi-momentum p on the interval 0 � p < 2π . The
eigenfunctions �λ are obtained as linear combinations �λ = {1 + S,� + S�̄,�2 + S�̄2, . . . , }
of Bloch solutions χ±

χ+ = (1,�,�2,�3, . . .), χ− = (1, �̄, �̄2, �̄3, . . .)
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of the homogeneous equation lχ± = λχ±, λ = � + �̄. Substitution of the ansatz �λ into the
homogeneous equation l�λ − λ�λ = 0 gives S = −�̄2. It is convenient to use the quasi-
momentum exponential as a spectral parameter instead of λ. Then we may write �λ = ��

where λ = � + �̄ is a point on the spectrum and |�| = 1. The spectral decomposition of l is
given by integration on the quasi-momentum exponential � in the positive direction over the
unit circle �

1

2π i

∫
�

〈u, �θ 〉��

d�

�
= u. (1)

The formula (1) can easily be verified on the dense set of finite elements u and extended via
closure to L2(�). The system of all eigenfunctions ��, 0 � p < 2π is over-complete. The
corresponding system on the interval 0 � p < π is complete and orthogonal. Hence the
spectral integral can be reduced to the integral over the upper semi-circle θ = eip, 0 � p < π ,
which corresponds to the upper shore of the spectral band [−2, 2] (since λ = � + �̄):

1

π

∫ π

0
〈u, ��〉�� dp = u, (2)

or to the integral over the spectral parameter λ—the ‘energy’:

1

2π

∫ 2

−2
〈u, ��〉��

dλ

sin p
= u, (3)

with λ = 2 cos p, sin p =
√

1 − λ2/4. More about spectral properties of discrete and
continuous periodic operators can be found in [8] (see also references therein). The operator
Lout = ⊕ ∑N

k=1 lk is defined in the space l2(E) of vectors �u = (u1, u2, u3, . . . , uN) with
coordinates

{
ul

s

} = �us ∈ E = CN, s = 0, 1, 2, . . . . Hereafter we call the space E a contact
space. The expansion over the system of eigenvectors �� = {�k}Nk=1 is obtained as an
orthogonal sum

1

2π i

∫
�

〈�u, ���〉 ���

d�

�
= �u (4)

where the summation is extended over the standard basis νs ∈ E, νs = δst, 1 � s, t � N . We
have also spectral expansions for Lout similar to (2, 3):

1

π

∫ π

0

∑
ν

〈�u, ���(ν)〉 ���(ν) dp = �u (5)

and
1

2π

∫ 2

−2

∑
ν

〈�u, ���(ν)〉 ���(ν)
dλ

sin p(λ)
= �u. (6)

The resolvent and the scattered waves of the perturbed operator L can be constructed via
matching a linear combination of Bloch solutions of the homogeneous equation on the leads
with an appropriate solution of the homogeneous equation on �in. If λ does not belong to the
spectrum of Lin, then the inner component �in of the scattered wave on �in is constructed as
a linear combination of resolvent kernels G(r, as, λ) of the cluster with poles at the contact
points as : G(r, as, λ) := Gs(r) where the leads ωs are attached:

�in =
N∑

s=1

αsGs. (7)

See a similar construction of the scattering ansatz for quantum graphs in [9]. The Green
function Gs(t) satisfies the non-homogeneous equation on the cluster:

LinGs(t) − λG(t) =
∑
r∈Us

Gs(r) − λGs(t) = λs,t .
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Here the summation is over the ‘star’ Us of the nearest neighbours to the node as . The
Kronecker symbol is defined in an obvious way: δs,t = 0 on all nodes t �= s in in; and it is
equal to 1 at the node as . On the complement of the (discrete) spectrum σ in

d of Lin the matrix
Gin(s, t, λ) coincides with the inverse matrix (Lin − λI)−1. In this paper, we construct the
scattered wave �s of the perturbed operator L which is initiated by an incoming wave on the
semi-infinite lead ωs attached to the vertex as . The components ψt

s of the scattered wave �s

on the leads ωt , t �= s, are proportional to the Bloch solution

ψt
s = St

s(1, �̄, �̄2, �̄3, . . . , ), (8)

such that the complex conjugate ψ̄ admits an analytic continuation on the spectral sheet �,
|�| < 1, of the spectral parameter as square-summable sequences ψ̄ t

s = S̄t
s (1,�,�2, . . . , ).

The component of the scattered wave on ωs is constructed of two Bloch solutions,

ψs
s = (1,�,�2, . . . , ) + Ss

s (1, �̄, �̄2, . . . , ). (9)

We introduce the matrix {G(at , as, λ)} := G consisting of the values of the Green functions
of the inner operator Lin on the contact points. It coincides with the restriction of the inverse
matrix (Lin − λI)−1 onto the contact space E:

G = PE(Lin − λI)−1|E.

Assume that the complete orthogonal system of all scattered waves, initiated by incoming
waves from all leads, is constructed. We calculate the coefficients

{
St

s

}
:= S which form the

scattering matrix.

Lemma 2.1.

S = −I + �G

I + �̄G
. (10)

Proof. Consider the matching conditions for the components of the scattered wave �s initiated
from the lead ωs :

N∑
r=1

αrG(t, r) = St
s, t �= s;

N∑
r=1

αrG(s, r) = 1 + Ss
s , t = s.

The equation L�s − λ�s = 0 can be written as

αt + St
s�̄ = 0, t �= s; αs + � + Ss

s �̄ = 0, t = s.

Eliminating α using the second pair of equations and the Kronecker symbol we can re-write
the linear system for S as

I + S + �G + �̄SG = 0

where S := {
St

s

}N

s,t=1. Then we have for the matrix of coefficients St
s of the scattered waves

�s, s = 1, 2, . . . , N :

S = −I + �G

I + �̄G
. �

Remark. The matrix G plays a role of the Neumann-to-Dirichlet map [10, 11]—the multi-
dimensional version of the Weyl–Titchmarsh–Krein function; see [12–16], which recently
attracts attention of specialists in spectral analysis; see for instance [17–20]. The finite-
dimensional operator-function S is the scattering matrix of L. The formula (10) is an analog of
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the formula expressing the scattering matrix in terms of the Dirichlet-to-Neumann map; see
[11]. For the one-dimensional versions of the formula, see also [21–23].

The scattering matrix is defined on the continuous spectrum [−2, 2] of the operator
L, which coincides with the continuous spectrum of the non-perturbed operator Lout. This
interval corresponds to the unit circle |�| = 1 in terms of the quasi-momentum exponential
� = eip, 0 � p � 2π . Using the connection between the quasi-momentum and the spectral
parameter, we conclude that the scattering matrix admits an analytic continuation onto the
unit disc |�| < 1, probably with some poles. The unit disc corresponds to the spectral
(physical) sheet of energy λ = � + �−1. Then the scattering matrix can be continued by
symmetry S+(�̄−1) = S−1(�) onto the whole complex plane of �, with a finite number of
zeros and poles. The zeros at the points �s inside the unit disc correspond to the eigenvalues
λs = �s + (�s)

−1 of L. Due to symmetry the scattering matrix has also complex poles situated
symmetrically to the zeros with respect to the unit circle. The complement {� : |�| > 1} of
the unit disc corresponds to the ‘non-physical sheet’ of energy. There are also zeros of the
analytic continuation of the scattering matrix on the non-physical sheet. Generally they are
called resonances (see for instance [8]) and play an important role in scattering processes. We
will discuss resonances in sections 3–5.

The spectral expansion of the operator L includes, generally, a sum over the eigenvalues
situated on the real axis outside [−2, 2], and an integral over the continuous spectrum.
Embedded eigenvalues and singular continuous spectrum are absent. We omit the standard
derivation of the spectral expansion. It is obtained via compression of the Riesz integral
around the spectrum of L to the real interval [−2, 2], taking into account the residues at the
eigenvalues, and followed by the use of the Hilbert identity for the jump of the resolvent across
the continuous spectrum. Here is the final formula:

U =
∑

ν

�m〈U, �m〉 +
1

2π

∫ 2

−2

N∑
s=1

�s
�〈U, �s

�〉 dλ

sin p(λ)
.

The scattered waves �s
�, constructed above via matching linear combination of Bloch waves

to linear combinations of Green’s functions of Lin with poles at the contact points, can also be
obtained from the asymptotic of the resolvent kernel G(t, s) of the operator L when t → ∞
along the lead attached to the corresponding contact point as :

G(τ, t) ≈ �s
τG

s(t), when t → ∞, t ∈ ωs.

Here Gs(s) = Gs(τ, s) is the Green function of the component of Lout on the lead ωs, τ ∈ ωs .
We also consider two simple examples which show that the Neumann-to-Dirichlet map

may have different structure depending on the size of the contact space.

Example 1. Consider a non-compact graph consisting of three leads attached to the nodes
a1, a2, a3, of an equilateral triangle �in. The adjacency matrix Lin of the triangle is

Lin =

0 1 1

1 0 1
1 1 0


 .

The eigenvalues are −1, multiplicity 2, and 2, multiplicity 1. The corresponding normalized
eigenvectors are, respectively,

φ1 = 1√
6


 1

−2
1


 ,

1√
2


 1

0
−1


 , and

1√
3


1

1
1


 .
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Since �in coincides with the set of contact points, we see that the whole operator L is split into
an orthogonal sum of two trivial parts defined by the symmetry of the eigenfunctions of Lin.
The equation I + �̄G = 0 splits into two equations in complex plane �, �̄ = �−1, which
correspond to the eigenvalues −1, 2:

� +
1

−1 − � − �−1
= 0, � +

1

2 − � − �−1
= 0

The first equation gives � = −1. The singularity � = −1 corresponds to the eigenvalue
λ1 = −2. The second equation defines the resonance � = 2. The zeros at the origin � = 0
in the numerator and in the denominator of the formula (10) for the scattering matrix cancel
each other and thus give no contribution to the resulting spectrum and resonances.

Example 2. Consider a ring �in with N equidistant nodes {e2πl/M}l=M−1
l=0 . The eigenvalues

of the adjacency matrix Lin are 2 cos 2πm/N , and the corresponding eigenvectors are
�m = {1, e2iπm/N , e2iπ2m/N , e2iπ3m/N , . . .},m = 1, 2, 3 . . . , N −1. Assume that only one lead
is attached to the ring at a0 = 1. Then there is only one contact point, and the corresponding
contact space and the ND-map are one-dimensional. The scattering matrix is

S(p) = −1 + �̄
∑N−1

m=0
1
N

[2 cos 2πm/N − � − �̄]−1

1 + �
∑N−1

m=0
1
N

[2 cos 2πm/N − � − �̄]−1

= −N − ∑N−1
m=0[� − e2π im/N ]−1[� − e−2π im/N ]−1

N − ∑N−1
m=0[�̄ − e2π im/N ]−1[�̄ − e−2π im/N ]−1

.

The complex zeros of the numerator of the scattering matrix can be found numerically.

3. Resonance mechanism of conductance on discrete graphs

We begin this section with a brief review of the resonance mechanism of conductance in
quantum networks with dynamics governed by a Schrödinger operator. Thin two-dimensional
quantum network constructed of the quantum wires ωs , width δ, and a quantum well �int,
with the diameter d, δ/d � 1, is often modelled (see [24]) by the corresponding continuous
one-dimensional star-graph constructed of one-dimensional leads and a point-wise vertex
supplied with an appropriate boundary condition. In the non-resonance case, the boundary
conditions at the vertices depend, in first approximation, on the ratio of the width of the wires
and the diameters of the quantum wells; see [25]. A more detailed description of the realistic
boundary condition may be obtained when taking into account subtle geometrical details of
the contact [26]. For instance, it was commonly expected that the angles between the wires at
the vertex play an essential role. On the other hand, one can expect that the transmission of
signals across the quantum well is defined by the shape of the resonance eigenfunction. Based
on the resonance mechanism of conductance one can derive an exact formula connecting
the scattering matrix of the star-shaped network with the Dirichlet-to-Neumann map of the
vertex quantum well. When replacing in this formula the Dirichlet-to-Neumann map by the
corresponding local rational approximation, we obtained in [27] an approximate formula for
the scattering matrix. In the simplest case of a single resonance eigenvalue the formula, in
standard Dirac bra − ket notation is

S(λ) ≈ −
P+

∂ϕr
0

∂n

〉〈
P+

∂ϕr
0

∂n

λ−λ0
+ ipP+

P+
∂ϕr

0
∂n

〉〈
P+

∂ϕr
0

∂n

λ−λ0
− ipP+

:= Sapprox(λ). (11)
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Here λ0 is the ‘re-normalized’ resonance eigenvalue of the Schrödinger operator in �, p is
the momentum of the electron, ∂ϕ0

∂n
is the normal current of the resonance eigenfunction at the

bottom sections  = ∪N
s=1γs of the quantum wires, and P = ⊕∑N

s=1 Ps is the orthogonal
projection onto the cross-section eigenfunctions of the open channels in the wires ωs . This
permits us to extend, for thin networks, δ/d � 1, the boundary condition at the vertex, to the
resonance case via substitution of (11) into

ip[I − Sapprox(λ)] ��(0) = [I + Sapprox(λ)] ��′(0).

This energy-dependent boundary condition shows that the resonance transmission across the
vertex is in fact defined by the shape of the resonance eigenfunction, but not necessarily by
the angles between the wires.

In the case of discrete graphs (optical networks) we do not have any analog of the small
parameter δ/d. Nevertheless we are able to describe the resonance nature of transmission
across the cluster revealing the role of the shape of the corresponding resonance eigenfunction.
We will do it by deriving an approximate formula from the exact formula (10) for the scattering
matrix.

The scattering matrix of the star-graph (10) is presented in the form of the ratio of the
matrix-functions D = PE + �G and D+ = PE + �̄G:

S = −D+D−1.

The resonances are complex vector zeros µr = �r +�−1
r of the scattering matrix: S(µr)νr = 0.

They coincide with the vector zeros of the numerator

D(µr)νr = [PE + �rPE(Lin − µI)−1|E]νr = 0.

The resolvent of the finite-dimensional operator L can be represented by the spectral series in
terms of its eigenvalues λl and eigenvectors ϕl :

(Lin − λI)−1 =
∑

l

ϕl〉〈ϕl

λl − λ
.

Assuming that λ0 is a ‘resonance’ eigenvalue of L, with the resonance eigenvector ϕ0, we can
split the above spectral representation into the sum of the polar term and the remainder:

(Lin − λI)−1 = ϕ0〉〈ϕ0

λ0 − λ
+

∑
l �=0

ϕl〉〈ϕl

λl − λ
:= ϕ0〉〈ϕ0

λ0 − λ
+ K0(λ).

Then we represent the ND-map as

G(λ) = PEϕ0〉〈PEϕ0

λ0 − λ
+ PEK0(λ0)PE + PE[K0(λ) − K0(λ0)]PE

= G0(λ) + PE[K0(λ) − K0(λ0)]PE. (12)

Assume that ‖PEϕ0‖ �= 0. Then we introduce the normalized ‘resonance contact vector’

e0 = ‖PEϕ0‖−1PEϕ0

and the corresponding orthogonal projections P0, P⊥, decomposing PE = P0 ⊕ P⊥:

P0 = e0〉〈e0, P⊥ = PE � P0. (13)

Lemma 3.1. If ‖PEϕ0‖ �= 0 and the operator P⊥K0(λ0)P⊥ := K⊥⊥ is invertible in P⊥E,
then the sum G0 of the first two terms on the right-hand side of (12) dominate the third term
on a small real neighbourhood of the resonance eigenvalue λ0.
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Proof. Represent the first two terms of (12) via the orthogonal decomposition P+ = P0 ⊕ P⊥
(13) as a 2 × 2 matrix:

G0(λ) =
([ ‖PEϕ0‖2

λ0−λ
+ TraceK0(λ0)P0

]
P0 P0K0(λ0)P⊥

P⊥K0(λ0)P0 P⊥K0(λ0)P⊥

)

:=
(

P0
[ ‖PEϕ0‖2

λ0−λ
+ K00

]
P0K0⊥

K⊥0P0 K⊥⊥

)
. (14)

Denoting

A = − λ0 − λ

‖PEϕ0‖2 − (λ0 − λ)K00
K⊥0K0⊥ + K⊥⊥,

we represent the solution of the equation

G0(λ)

(
u0

u⊥

)
=

(
f0

f⊥

)

in the form

u⊥ = A−1

[
− λ0 − λ

‖PEϕ0‖2 − (λ0 − λ)K00
K⊥0f0 + f1

]

u0 = λ0 − λ

‖PEϕ0‖2 − (λ0 − λ)K00
[f0 − P0K0⊥u⊥].

(15)

We leave to the reader the explicit calculation of the inverse G−1
0 (λ) based on (15). One

can see that the inverse of (14) is uniformly bounded near λ0, if ‖PEϕ0‖2 �= 0 and K⊥⊥ is
invertible. Hence

G(λ) = G0(λ)
{
I + G−1

0 (λ)PE[K0(λ) − K0(λ0)]PE

}
. (16)

The second term in the curled brackets on the right-hand side of (16) is small near λ0 due to
the smoothness of K0(λ). �

Corollary. The sums of leading terms of the numerator and the denominator of the scattering
matrix

PE + �G0(λ) := D0(λ), PE + �̄G0(λ) := D+
0 (λ) (17)

are invertible on the upper and lower shores of the spectral band: 0 < p < π, π < p < 2π .
This is derived from the symmetry of the matrix G0 and positivity of the imaginary part of �

on both shores of the spectral band.

Theorem 3.1. If the resonance eigenvalue is situated strictly inside the spectral band of L,
and the conditions of the preceding statement (3.1) are fulfilled, then the expression (10) for
the scattering matrix can be replaced, with a minor error, on a certain small real interval �0

centred at the resonance eigenvalue λ0, by the approximate expression:

S(λ) ≈ −PE + �G0(λ)

PE + �̄G0(λ)
:= Sapprox(λ). (18)

The scattering matrix S(λ) can be calculated on �0 via analytic perturbation procedure based
on Sapprox(λ), with geometrically convergent series of successive approximations.

Proof. Due to the above Corollary both the numerator D+
0 and the denominator D0 of Sapprox are

invertible inside the spectral band; hence both of them dominate the remainder G(λ) − G0(λ)
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in a small real neighbourhood of the resonance eigenvalue:

[G(λ) − G0(λ)](PE + �G0(λ))−1 = o(1).

Hence

S(λ) = (I + o(1))Sapprox(λ)(I + o+(1))−1 ≈ Sapprox(λ). (19)

If the small real interval �0 is selected such that for λ ∈ �0, we have ‖o(1)‖ < 1, then, due to
(19), the scattering matrix S(λ) can be calculated on �0 via analytic perturbation procedure,
based on Sapprox(λ), with geometrically convergent series of successive approximations. �

The approximate scattering matrix may play a certain role in mathematical design of an
optical network. In fact, the preceding theorem shows that the transmission of the signal
with resonance energy in the star-graph across the cluster is essentially equivalent to the
transmission of the signal on an auxiliary network constructed of the wires attached to a single
resonance node supplied with the formal energy-dependent ‘Hamiltonian’:

l(λ)�u =




G0(λ) 1 0 0 0 0 0 0 . . .

1 0 1 0 0 0 0 0 . . .

0 1 0 1 0 0 0 0 . . .

0 0 1 0 1 0 0 0 . . .

0 0 0 1 0 1 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .







�u1

�u2

�u3

�u4

�u5

. . .




. (20)

Here �us = (
u1

s , u
2
s , u

3
s , . . . , u

N
s

)
. The corresponding auxiliary scattering matrix is Sapprox.

The energy-dependence of the Hamiltonian of the auxiliary network prevents us from using
standard operator machinery for analysis of the corresponding dynamics. But we are also
able to prove, that Sapprox coincides with the scattering matrix of a solvable model of the
network, obtained via equipping the node with an appropriate ‘inner structure’. We postpone
the construction of the model to a forthcoming publication.

Note that both exact and approximate scattering matrices admit an analytic continuation
with respect to � across the absolutely continuous spectrum |�| = 1 onto the non-physical
sheet |�| > 1. Hereafter we consider the scattering matrix already continued on the whole
complex plane � with appropriate singularities at the points symmetric to the zeros. The zeros
of the scattering matrix on the physical sheet |�| < 1 are the eigenvalues of L. The zeros
on the non-physical sheet are resonances. In the case when the graph has N semi-infinite
branches, these are vector zeros, that is,

S(µ)νµ = 0, ν ∈ E, dim E = N.

Calculation of resonances is an important problem which generally cannot be solved based on
self-adjoint theory. In the case of quantum networks there exists a small parameter—the ratio
δ/d—which permits us to calculate the resonances based on the asymptotic—the approximate
scattering matrix—when δ/d → 0. We do not have any small parameter in the case of
combinatoric graphs. Nevertheless one can formulate conditions which permit us to localize
a resonance in a neighbourhood of the resonance eigenvalue. In this paper we will do the
corresponding calculation for zeros of the approximate scattering matrix.

Theorem 3.2. The zeros of the approximate scattering matrix can be found from the equation

‖PEϕ0‖2

λ0 − µ
+ K00 = −�−1 + K0⊥[�−1 + K⊥⊥]−1K⊥0,

with � = �µ : µ = �µ + �−1
µ .
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Proof. Really, the vector zeros (µ, eµ) of the approximate scattering matrix coincide with the
ones of the numerator D0(µ) eµ = 0:([

�−1 + ‖PEϕ0‖2

λ0−µ
+ K00

]
P0 P0K0⊥

K⊥0P0 K⊥⊥

) (
eµ

0

eµ

⊥

)

:=
([

�−1 + ‖PEϕ0‖2

λ0−λ
+ K00

]
P0 P0K0⊥

K⊥0P0 �−1 + K⊥⊥

) (
eµ

0

eµ

⊥

)
= 0. (21)

Eliminating eµ

⊥ we obtain an equation for µ:

‖PEϕ0‖2

λ0 − µ
+ K00 = −�−1 + K0⊥[�−1 + K⊥⊥]−1K⊥0. (22)

Here the inverse [�−1 + K⊥⊥]−1 exists for complex � = �µ due to the symmetry of K⊥⊥.
Choosing eµ

0 = e0, we find eµ

⊥ as

eµ

⊥ = −[�−1
µ + K⊥⊥]−1K⊥0e0.

�

If we choose �0 = �(λ0) as the first approximation for �µ, then we obtain the first
approximation for µ as

µ0 ≈ λ0 +
‖PEϕ0‖2

K00 − K0⊥
[
�−1

0 + K⊥⊥
]−1K⊥0 − �0

−1
.

One can prove that this approximation is correct, if the second term on the right-hand side of
the formula is small.

The zeros of the numerator D(λ) of the exact scattering matrix can be also localized via
comparison with D0(λ), based on [28], if an appropriate domination condition

sup
�ε

∥∥D−1
0 (λ)PE[K0(λ) − K0(λ0)]PE

∥∥ < 1 (23)

is fulfilled on some small circle �ε = {λ : |λ − µr | = ε}, centred at the zero µr of the
approximate scattering matrix. The problem of localization of resonances/eigenvalues of L
for the star-graph with a certain geometry can be analysed based on straightforward computing
for eigenvalues and eigenvectors of the operator Lin.

4. The discrete wave equation

Once the spectral analysis of the adjacency matrix is completed, one can solve various
dynamical problems on the graph �. Denote by �u(t) a function on the graph which depends
also on the discrete time variable t = 0,±1,±2, . . ., and takes complex values at the nodes
on the compact subgraph �in and on the leads ωs, s = 1, 2, . . . , N :

�u(t) = {uin(t), u1(t), u2(t), u3(t), . . . , uN(t)}.
Consider the discrete wave equation on the graph �

u(t + 1) + u(t − 1) = Lu(t), (24)

with the Cauchy data U(0) = (U0(0), U1(0)) fixed at the initial moment of time. Generally
we consider also the Cauchy data U(t) = (U0(t), U1(t)) at the moment t:

U0(t) = u(t), U1(t) = u(t + 1) − u(t − 1).

One can see that the compactly supported functions �u(t ± s) on the leads represent incoming
and outgoing waves. The energy dot-product associated with the adjacency matrix Lout on the
leads ω

[U, V]Eout
= 1

2

〈(
4 − L2

out

)
U0, V0

〉
L2(ω)

+ 1
2 〈U1, V1〉L2(ω)
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vanishes if U and V are the Cauchy data of incoming and outgoing waves, respectively, and
is positive for U = V. Thus the restriction of the evolution defined by the discrete wave
equation onto the outer space (supported by the wires) has the typical properties of the Lax–
Phillips unitary group; see [29]. In particular, it has an orthogonal pair of incoming and
outgoing subspaces obtained by the closure in the energy-norm the liner hulls of all compactly
supported Cauchy data of incoming and outgoing waves, respectively.

This structure is inherited also by the wave evolution (24) on the whole graph. To motivate
this statement, let us introduce the dot-product in the space E of all Cauchy data of the wave
equation (24):

[U, V]E = 1
2 〈(4 − L2)U0, V0〉L2(�) + 1

2 〈U1, V1〉L2(�). (25)

Generally the energy dot-product defined by the formula (25) is indefinite, since the operator
L may have discrete spectrum. If the spectrum of L is absolutely continuous, then [U, V]Eout

is
positive for U = V. Hereafter we proceed under the assumption that the dot-product (25) is
positive. The general case of the indefinite dot-product can be treated similarly to [31].

We represent E as an orthogonal sum of incoming and outgoing subspaces Din,Dout of
Cauchy data supported on the leads and the co-invariant subspace K

K := E � [Din ⊕ Dout].

Theorem 4.1. The discrete wave equation on the space of energy-normed Cauchy data is
equivalent to the unitary group in E defined by the appropriate Dirac operator:

U := 1

2

(
L 1

L2 − 4 L

)
, U + U−1 =

(
L 0
0 L

)
.

The eigenfunctions of the absolutely-continuous spectrum of the generator U are represented
as

�� =
( 1

�−�−1 ��

��

)
. (26)

They correspond to the spectral points � = eip, 0 � p � 2π : U�� = ���. The spectral
representation of the transformation U is given by the formula

U
J−→ [U,��]E := (JU)(�),

(JU)(�)
J −1−→ 1

2π i

∫
�1

��(JU)(�)
d�

�
= U.

Proof. The identity

U + U−1 =
(

L 0
0 L

)
can be obtained by direct calculation. This means that all spectral objects for the operator U ,
including the resolvent and the spectral expansion, can be constructed from the corresponding
details of the operator L—see a similar calculation for the standard Lax–Phillips generator in
[30]. In particular, the eigenfunctions of the absolutely continuous spectrum of the generator
U can be obtained from the columns (26) of the scattered waves �� of L in the course of
the solution of the wave equation by the Fourier method. It is sufficient to verify that ��

satisfies the homogeneous equation U�� = ��� in the weak sense. We use the fact that
L�� = (� + �−1)��, in the weak sense, as a functional on a dense domain of compactly
supported elements in l2(�). Then, using the equations (L2 − 4)�� = (� − �−1)2�� and
L�� = (� + �−1)��, we obtain the desired statement. To prove the equivalence of the
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unitary group to the original wave equation we substitute �u(t + 1) + �u(t − 1) = L�u(t) into U .
We obtain

2�u(t + 1) = �u(t + 1) + �u(t − 1) + �u(t + 1) − �u(t − 1)

and

2(�u(t + 2) − �u(t)) = L(�u(t + 1) + �u(t − 1)) − 4�u(t) + L�u(t + 1) − L�u(t − 1).

Using �u(t + 1) + �u(t − 1) = L�u(t), again, we obtain the announced statement. The unitarity
of the transformation U follows from the spectral representation. �

5. Lax–Phillips semigroup and resonances

If the spectrum of the operator U is purely continuous, then the corresponding unitary group
U l exhibits all typical features of the simplest Lax–Phillips scattering system. In particular,
it possesses an orthogonal pair of incoming and outgoing subspaces of the Cauchy data,
supported by the leads, and the corresponding co-invariant subspace, supported by the cluster.
The Lax–Phillips scattering matrix is obtained from the stationary scattering matrix S (see
(10)) via complex conjugation on the spectrum,

SLPh(�) = −1 + �̄G

1 + �G
,

and can be continued onto the whole complex plane of the quasi-momentum exponential �

by the formula

SLPh(�) = −1 + �−1G

1 + �G
= −�

� + G

1 + θG
, with G = G(λ) = G(� + �−1). (27)

The Lax–Phillips scattering matrix is analytic in the unit disc because the pair of incoming
and outgoing subspaces supported by the leads is orthogonal; see [29]. Using the spectral
representation for the Green function of Lin in terms of eigenvectors ϕs and eigenvalues λs ,

G(λ) =
M∑

s=1

PEϕs〉〈PEϕs

λs − λ
, (28)

we obtain an equation for the resonances—vector zeros (�r, νr) of the Lax–Philips scattering
matrix SLPh(�r)νr = 0 in the unit disc |�| < 1:

�ν +
M∑

s=1

PEϕs〉〈PEϕs, ν〉
λs − λ

= 0, with λ = � + �−1.

From the solution of this equation we can observe the dependence of the resonances on the
eigenvalues of Lin and on the projection PE�s of the eigenvectors onto the contact space E.
This way the shape of the eigenvectors of Lin defines the non-stationary transmission from
one lead to another.

The matrix-function SLPh(�) contains complete spectral information on dynamics defined
by the wave equation. In particular, the incoming and outgoing subspaces of the corresponding
unitary evolution group U t are transferred, by the spectral representation J , into H 2

−, SLPhH
2
+

respectively, while the co-invariant subspace becomes H 2
+ � SLPhH

2
+ := K. The eigenvalues

of the generator T of the Lax–Phillips semigroup [29]

PKU t |K := T t , t = 0, 1, 2 . . .

coincide with the zeros �s of the Lax–Phillips scattering matrix and the eigenvectors—the
resonance states—in the spectral representation J are simply SLPhνr(�r − �)−1. The bi-
orthogonal system of eigenvectors of T consists of reproducing kernels (1 − �̄r�)−1; see
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[32]. The completeness of the system of resonance states is equivalent to the absence of the
singular factor in SLPh(�) in the unit disc.

Corollary. The scattering matrix SLPh of the wave evolution with positive adjacency matrix is
a Blaschke product. This is simply because the above formula (27) represents it as a ratio of
two polynomials of �, of the same degree. Hence the system of eigenvectors of the discrete
spectrum of the semigroup T t , t = 0, 1, 2, . . . is complete.

One can also explore, based on [33, 34], the joint completeness of eigenvectors of both
semigroups T t , [T +]t , t = 0, 1, 2, . . . .

6. Conclusion: general periodic leads

Generally, the spectrum of the adjacency matrix of the non-compact graph may have more
sophisticated structure; see, for instance, [35]. In particular, the spectrum may be non-
connected if the leads have a richer period. Really, assume that an additional node is attached
to each node bk of the lead considered in the previous section, such that the added node has
only one nearest neighbour, the node bk . Then the new lead will have two nodes on the
minimal period and the adjacency matrix on the lead will act on the semi-infinite wave vector
�u = {u2l , u2l+1}∞l=0 as a semi-infinite periodic matrix:

{l�u}s = {us−2 + us+1 + us+2}, s = 2l � 2, {l�u}s+1 = us.

The absolutely continuous spectrum of l consists of two spectral bands σ(l) = [−√
3 −

1,−√
2 + 1] ∪ [

√
2 − 1,

√
3 + 1]. The standard Lax–Phillips theory is not applicable to

operators with non-connected band spectrum. But the wave equation, naturally associated
with l, permits us to define an appropriate Dirac operator in the corresponding energy-normed
space of Cauchy data and develop a modified Lax–Phillips scattering theory based on the
spectral theory of function on the double-connected domain C\σ(l) and the corresponding
double, diffeomorphic to the torus; see [36]. In the general case of several spectral bands the
relevant theory, including joint completeness of eigenvectors of an analog of the Lax–Phillips
semigroup, can be developed based on recent results in spectral theory of functions on multiply
connected domains; see [34, 37–39] and references therein. We postpone discussion of these
interesting questions to a forthcoming publication.
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